Myocardial Autophagy after Severe Burn in Rats
نویسندگان
چکیده
BACKGROUND Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. METHODS Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. RESULTS Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. CONCLUSION Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction.
منابع مشابه
THE EFFECT OF HIGH-INTENSITY INTERVAL TRAINING (HIIT) WITH AND WITHOUT CAFFEINE INJECTION ON EXPRESSION OF MYOCARDIAL AUTOPHAGY-RELATED PROTEINS IN DIABETIC RATS
Background: Autophagy is a new therapeutic strategy aimed at reducing the diabetic abnormalities. While excessive or insufficient autophagic activity during diabetes leads to altered cellular homeostasis. So, aim of the present study was conducted to determine the effect of eight-week high-intensity interval training (HIIT) along with caffeine injection on the levels of some myocardial autophag...
متن کاملER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury
Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) fo...
متن کاملEffects of glycyl-glutamine dipeptide supplementation on myocardial damage and cardiac function in rats after severe burn injury.
Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. Seventy-two Wistar rats were randomly divided into three groups: normal control (C), burned control (B) and glycyl-glut...
متن کاملTLR4 inactivation and rBPI(21) block burn-induced myocardial contractile dysfunction.
Both large burns and severe gram-negative sepsis are associated with acute myocardial contractile dysfunction. Because others have reported that burn injury may be followed by transient endotoxemia, we hypothesized that bacterial endotoxin induces contractile impairment after burn trauma. We tested this hypothesis in two rodent models. In each model, postburn myocardial contractility was assess...
متن کاملBurn injury decreases myocardial Na-K-ATPase activity: role of PKC inhibition.
Cardiomyocyte sodium accumulation after burn injury precedes the development of myocardial contractile dysfunction. The present study examined the effects of burn injury on Na-K-ATPase activity in adult rat hearts after major burn injury and explored the hypothesis that burn-related changes in myocardial Na-K-ATPase activity are PKC dependent. A third-degree burn injury (or sham burn) was given...
متن کامل